Iterating Fixed Point via Generalized Mann’s Iteration in Convex b-Metric Spaces with Application
Author(s) -
Awais Asif,
Monairah Alansari,
Nawab Hussain,
Muhammad Arshad,
Amjad Ali
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/8534239
Subject(s) - mathematics , iterated function , metric space , ball (mathematics) , regular polygon , complete metric space , contraction (grammar) , convex function , fixed point , combinatorics , discrete mathematics , mathematical analysis , medicine , geometry
This manuscript investigates fixed point of single-valued Hardy-Roger’s type F -contraction globally as well as locally in a convex b -metric space. The paper, using generalized Mann’s iteration, iterates fixed point of the abovementioned contraction; however, the third axiom (F3) of the F -contraction is removed, and thus the mapping F is relaxed. An important approach used in the article is, though a subset closed ball of a complete convex b -metric space is not necessarily complete, the convergence of the Cauchy sequence is confirmed in the subset closed ball. The results further lead us to some important corollaries, and examples are produced in support of our main theorems. The paper most importantly presents application of our results in finding solution to the integral equations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom