z-logo
open-access-imgOpen Access
Advanced Fuzzy-Logic-Based Traffic Incident Detection Algorithm
Author(s) -
Changhong Zhu,
Zhen-jun Guo,
Jie Ke
Publication year - 2021
Publication title -
advances in fuzzy systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.38
H-Index - 19
eISSN - 1687-711X
pISSN - 1687-7101
DOI - 10.1155/2021/8471683
Subject(s) - algorithm , computer science , constant false alarm rate , exponential smoothing , fuzzy logic , learning vector quantization , linde–buzo–gray algorithm , smoothing , vector quantization , artificial intelligence , computer vision
This study demonstrates an incident detection algorithm that uses the meteorological and traffic parameters for improving the poor performance of the automatic incident detection (AID) algorithms under extreme weather conditions and for efficiently using the meteorological devices on advanced freeways. This algorithm comprises an incident detection module that is based on learning vector quantization (LVQ) and a meteorological influencing factor module. Field data are obtained from the Yuwu freeway in Chongqing, China, to verify the algorithm. Further, the performance of this algorithm is evaluated using commonly used criteria such as mean time to detection (MTTD), false alarm rate (FAR), and detection rate (DR). Initially, an experiment is conducted for selecting the algorithm architecture that yields the optimal detection performance. Additionally, a comparative experiment is performed using the California algorithm, exponential smoothing algorithm, standard normal deviation algorithm, and McMaster algorithm. The experimental results demonstrate that the algorithm proposed in this study is characterized by high DR, low FAR, and considerable suitability for applications in AID.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom