Improved Byzantine Fault-Tolerant Algorithm Based on Alliance Chain
Author(s) -
Wuqi Gao,
Wubin Mu,
Shanshan Huang,
Man Wang,
Xiaoyan Li
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8455180
Subject(s) - computer science , byzantine fault tolerance , byzantine architecture , alliance , algorithm , chain (unit) , fault (geology) , fault tolerance , distributed computing , geology , ancient history , physics , astronomy , seismology , political science , law , history
Alliance chain is a typical multicenter block chain and is easily implemented, so it is supported by more and more enterprises and governments. This paper analyzes the advantages and disadvantages of the Practical Byzantine Fault Tolerance (PBFT) in the alliance chain application scene. Aiming at the low efficiency of multinode consensus of the PBFT algorithm, the C-Raft-PBFT consensus algorithm is proposed. By integrating the Raft algorithm and the PBFT algorithm with the credit mechanism, designing node credit evaluation and grading protocols, and increasing Byzantine node detection based on feedback mechanism and other methods, the system efficiency is improved. The experiment results show that the improved algorithm has better throughput and lower delay, and the system’s fault tolerance is also improved. Among them, the delay is reduced by 1.93 seconds on average; in the case of an increase in system nodes, the number of nodes in the experimental data is between 200 and 225, and the throughput is increased by 6.46% on average.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom