Short-Term Load Forecasting Method Based on Deep Reinforcement Learning for Smart Grid
Author(s) -
Wei Guo,
Kai Zhang,
Xinjie Wei,
Mei Liu
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/8453896
Subject(s) - computer science , reinforcement learning , term (time) , artificial intelligence , grid , smart grid , reinforcement , machine learning , electrical engineering , physics , mathematics , quantum mechanics , psychology , social psychology , geometry , engineering
Short-term load forecasting is an important part to support the planning and operation of power grid, but the current load forecasting methods have the problem of poor adaptive ability of model parameters, which are difficult to ensure the demand for efficient and accurate power grid load forecasting. To solve this problem, a short-term load forecasting method for smart grid is proposed based on multilayer network model. This method uses the integrated empirical mode decomposition (IEMD) method to realize the orderly and reliable load state data and provides high-quality data support for the prediction network model. The enhanced network inception module is used to adaptively adjust the parameters of the deep neural network (DNN) prediction model to improve the fitting and tracking ability of the prediction network. At the same time, the introduction of hybrid particle swarm optimization algorithm further enhances the dynamic optimization ability of deep reinforcement learning model parameters and can realize the accurate prediction of short-term load of smart grid. The simulation results show that the mean absolute percentage error e MAPE and root-mean-square error e RMSE of the performance indexes of the prediction model are 10.01% and 2.156 MW, respectively, showing excellent curve fitting ability and load forecasting ability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom