z-logo
open-access-imgOpen Access
Study on Cold Chain Transportation Model of Fruit and Vegetable Fresh-Keeping in Low-Temperature Cold Storage Environment
Author(s) -
Xiaolong Jiao,
Wen Cai Xu,
Lintong Duan
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/8445028
Subject(s) - cold chain , cold storage , computer science , genetic algorithm , refrigeration , environmental science , agricultural engineering , mathematical optimization , mathematics , food science , engineering , horticulture , biology , mechanical engineering
Due to the limitation of later stage intelligent algorithms, the fruit and vegetable fresh-keeping cold chain transportation scheme did not meet the expectation and could not achieve the dual objectives of the shortest time and the lowest consumption at the same time. In order to solve the above problems, a cold chain transportation model of fruit and vegetable fresh-keeping in a low-temperature cold storage environment is proposed. The model is based on the topology of the cold chain transportation network. By setting the assumptions of the fruit and vegetable fresh-keeping cold chain transportation model, the objective model is composed of three parts: vehicle power fuel consumption cost, cold chain transportation refrigeration cost, and total fruit and vegetable loss cost. Under six constraints, the improved ant colony algorithm is used to find the optimal fruit and vegetable fresh-keeping cold chain transportation route. The experimental results show that compared with the methods based on ALNS, genetic algorithm, and quantum bacterial foraging optimization algorithm, the research method can bring the best comprehensive benefit by accomplishing the fruit and vegetable transportation task in the shortest time at the lowest cost, and the research goal is thus achieved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom