z-logo
open-access-imgOpen Access
In‐Body Electromagnetic Sensor Combined with AI‐Enhanced Electrocardiography for Pacemaker Working Status Telemonitoring
Author(s) -
Wu Lu,
Ranran Ding,
Bingjie Wu,
Wenbin Zhao,
Dong Huang,
Xue Zhang
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/8444015
Subject(s) - electrocardiography , medicine , electrical engineering , cardiology , engineering
This paper describes the design and implementation of an in-body electromagnetic sensor for patients with implanted pacemakers. The sensor can either be mounted on myocardial tissue and monitor the electrocardiography (ECG) with contact electrodes or implanted under the skin and monitor the ECG with coaxial leads. A 16-bit high-resolution analog front-end (AFE) and an energy-efficient 32-bit CPU are used for instantaneous ECG recording. Wireless data transmission between the sensor and clinician’s computer is achieved by an embedded low-power Bluetooth transmitter. In order to automatically recognize the working status of the pacemaker and alarm the episodes of arrhythmias caused by pacemaker malfunctions, pacing mode classification and fault diagnosis on the recorded ECG were achieved based on an AI algorithm, i.e., a resource allocation network (RAN). A prototype of the sensor was implemented on a human torso, and the in vitro test results prove that the sensor can work properly for the 1-4-meter transmission range.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom