z-logo
open-access-imgOpen Access
An Approximate Solution for a Class of Ill-Posed Nonhomogeneous Cauchy Problems
Author(s) -
Nihed Teniou,
Salah Djezzar
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/8425564
Subject(s) - operator (biology) , mathematics , initial value problem , sign (mathematics) , boundary value problem , hilbert space , cauchy distribution , mathematical analysis , combinatorics , biochemistry , chemistry , repressor , transcription factor , gene
In this paper, we consider a nonhomogeneous differential operator equation of first order u ′ t + A u t = f t . The coefficient operator A is linear unbounded and self-adjoint in a Hilbert space. We assume that the operator does not have a fixed sign. We associate to this equation the initial or final conditions u 0 = Φ  or  u T = Φ . We note that the Cauchy problem is severely ill-posed in the sense that the solution if it exists does not depend continuously on the given data. Using a quasi-boundary value method, we obtain an approximate nonlocal problem depending on a small parameter. We show that regularized problem is well-posed and has a strongly solution. Finally, some convergence results are provided.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom