z-logo
open-access-imgOpen Access
A PHD-SLAM Method for Mixed Birth Map Information Based on Amplitude Information
Author(s) -
Fei Zhang,
Zijing Zhang,
Luxi Yang,
Xinyu Zhang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8420814
Subject(s) - simultaneous localization and mapping , artificial intelligence , feature (linguistics) , computer science , computer vision , clutter , noise (video) , global map , a priori and a posteriori , position (finance) , mobile robot , robot , pattern recognition (psychology) , telecommunications , linguistics , philosophy , radar , epistemology , finance , economics , image (mathematics)
The Simultaneous Localization and Mapping (SLAM) method of mobile robots has the problem of low accuracy in complex environments with dense clutter and various map features, such as complex indoor environments and underwater environments. This problem is mainly embodied in estimating the location and number of feature points on the map and the position of the robot itself. In order to solve this problem, a new method based on the probability hypothesis density (PHD) SLAM is proposed in this paper, a PHD-SLAM Method for Mixed Birth Map Information Based on Amplitude Information (AI-MBMI-PHD-SLAM). Firstly, this paper proposes a PHD-SLAM method based on amplitude information (AI-PHD-SLAM). The method uses the amplitude information of map features to obtain more precise map features. Then, the clutter likelihood function is used to improve the estimation accuracy of the feature map in the SLAM process. Meanwhile, this paper studies the performance of the PHD-SLAM method with the amplitude information under the condition of the known signal-to-noise ratio or the unknown signal-to-noise ratio. Secondly, aiming at the problem that PHD-SLAM lacks a priori information in the prediction stage, an AI-PHD-SLAM-based mixed birth map information method is added. In this method, map information that has been detected before the previous moment is added to the observation information in the map prediction phase as a new map information set in the prediction phase. This can increase the prior information and improve the problem of insufficient prior information in the prediction stage. The results of the experiments show that the proposed method and the improved method outperform the RB-PHD-SLAM method in estimating the number and location accuracy of map features and have higher computational efficiency.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom