z-logo
open-access-imgOpen Access
Mixed Script Identification Using Automated DNN Hyperparameter Optimization
Author(s) -
Muhammad Yasir,
Li Chen,
Amna Khatoon,
Muhammad Amir Malik,
Fazeel Abid
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/8415333
Subject(s) - computer science , natural language processing , artificial intelligence , language identification , bengali , identification (biology) , scripting language , speech recognition , word (group theory) , cursive , natural language , programming language , linguistics , philosophy , botany , biology
Mixed script identification is a hindrance for automated natural language processing systems. Mixing cursive scripts of different languages is a challenge because NLP methods like POS tagging and word sense disambiguation suffer from noisy text. This study tackles the challenge of mixed script identification for mixed-code dataset consisting of Roman Urdu, Hindi, Saraiki, Bengali, and English. The language identification model is trained using word vectorization and RNN variants. Moreover, through experimental investigation, different architectures are optimized for the task associated with Long Short-Term Memory (LSTM), Bidirectional LSTM, Gated Recurrent Unit (GRU), and Bidirectional Gated Recurrent Unit (Bi-GRU). Experimentation achieved the highest accuracy of 90.17 for Bi-GRU, applying learned word class features along with embedding with GloVe. Moreover, this study addresses the issues related to multilingual environments, such as Roman words merged with English characters, generative spellings, and phonetic typing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom