Rank-Based Ant System via the Relative Position in a Local Hierarchy
Author(s) -
Tomoko Sakiyama,
Kotaro Uneme,
Ikuo Arizono
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/8372318
Subject(s) - hierarchy , rank (graph theory) , consistency (knowledge bases) , position (finance) , ant , computer science , artificial intelligence , mathematical optimization , ant colony optimization algorithms , operations research , mathematics , economics , computer network , finance , combinatorics , market economy
ASrank has been proposed as an improved version of the ant colony optimisation (ACO) model. However, ASrank includes behaviours that do not exist in the actual biological system and fall into a local solution. To address this issue, we developed ASmulti, a new type of ASrank, in which each agent contributes to pheromone depositions by estimating its rank by interacting with the encountered agents. In this paper, we attempt further improvements in the performance of ASmulti by allowing agents to consider their position in a local hierarchy. Agents in the proposed model (AShierarchy) contribute to pheromone depositions by estimating the consistency between a local hierarchy and global (system) hierarchy. We show that, by using several TSP datasets, the proposed model can find a better solution than ASmulti.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom