z-logo
open-access-imgOpen Access
Comparison Analysis of Different Time‐Scale Heart Rate Variability Signals for Mental Workload Assessment in Human‐Robot Interaction
Author(s) -
Shiliang Shao,
Ting Wang,
Yawei Li,
Chunhe Song,
Yihan Jiang,
Chen Yao
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8371637
Subject(s) - computer science , workload , scale (ratio) , heart rate variability , real time computing , simulation , heart rate , cartography , medicine , operating system , blood pressure , radiology , geography
Excessive mental workload affects human health and may lead to accidents. This study is motivated by the need to assess mental workload in the process of human-robot interaction, in particular, when the robot performs a dangerous task. In this study, the use of heart rate variability (HRV) signals with different time scales in mental workload assessment was analyzed. A humanoid dual-arm robot that can perform dangerous work was used as a human-robot interaction object. Electrocardiogram (ECG) signals of six subjects were collected in two states: during the task and in a relaxed state. Multiple time-scale (1, 3, and 5 min) HRV signals were extracted from ECG signals. Then, we extracted the same linear and nonlinear features from the HRV signals at different time scales. The performance of machine learning algorithms using the different time-scale HRV signals obtained during the human-robot interaction was evaluated. The results show that for the per-subject case with a 3 min HRV signal length, the K -nearest neighbor classifier achieved the best mental workload classification performance. For the cross-subject case with a 5 min time-scale signal length, the gentle boost classifier achieved the best mental workload classification accuracy. This study provides a novel research idea for using HRV signals to measure mental workload during human-robot interaction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom