Transient Response of a Simulated Aeroengine with a Fusing Structure during a Fan-Blade Out Event
Author(s) -
Chi Ma,
Wei Chen,
Jiaqi Han,
Lulu Liu,
Zhenhua Zhao,
Gang Luo
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/8357380
Subject(s) - rubbing , casing , transient (computer programming) , structural engineering , rotor (electric) , event (particle physics) , stiffness , vibration , transient response , blade (archaeology) , engineering , computer science , mechanical engineering , acoustics , physics , electrical engineering , quantum mechanics , operating system
A fan-blade out (FBO) event may cause complex vibrations in an aeroengine. A fusing structure protects the structural integrity of the whole aeroengine after an extreme accident, such as a blade-loss event. In this paper, we investigate not only the transient and steady responses of a simulated aeroengine model with a fusing structure after an FBO event but also the changes made to the model because of the fusing structure. Our simulated model of an aeroengine includes two rotors, bearings, and a casing. The results for the dynamic response of the simulated model show that the fusing structure can reduce the steady-state response and the impact load on the support bearings in the rotor system. The rubbing impact between the blades and casing was accounted for. A fast method for calculating the response of fused structures was developed, which may be useful when designing the stiffness of the fusing structure.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom