Construction of a Potentially Functional circRNA-miRNA-mRNA Network in Intervertebral Disc Degeneration by Bioinformatics Analysis
Author(s) -
Zhenxin Huo,
Hao Li,
Lijun Tian,
Jianhua Li,
Kaihui Zhang,
Zhenhua Li,
Guowang Li,
Lilong Du,
Haiwei Xu,
Baoshan Xu
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/8352683
Subject(s) - competing endogenous rna , microrna , biology , computational biology , circular rna , bioinformatics , gene , gene regulatory network , messenger rna , gene expression , rna , genetics , long non coding rna
Background The competing endogenous RNA- (ceRNA-) mediated regulatory mechanisms are known to play a pivotal role in intervertebral disc degeneration (IDD). Our research intended to establish a ceRNA regulatory network related to IDD through bioinformatics analyses.Methods The expression profiles of circRNA, miRNA, and mRNA were obtained from the public Gene Expression Omnibus (GEO) datasets. Then, we use sequence-based bioinformatics methods to select differentially expressed mRNAs (DEmRNAs), microRNAs (DEmiRNAs), or circRNAs (DEcircRNAs) related to IDD. We used ChEA3 to verify the targets of transcription factors (TFs). Then, we used DAVID to annotate the DEmRNAs. Finally, we constructed a potentially circRNA-miRNA-mRNA network related to IDD by predicting in the database (ENCORI, TargetScan, miRecords, miRmap, and circBank).Results We identified 31 common DEmRNAs by Venn analysis, of which MMP2 was regarded as the key hub genes. Simultaneously, miR-423-5p and miR-185-5p were predicted as the upstream molecules of MMP2. Furthermore, a total of six DEcircRNAs were predicted as the upstream circRNAs of miR-423-5p and miR-185-5p. Then, a potential circRNA-miRNA-mRNA network related to IDD was constructed by bioinformatics analysis.Conclusion A comprehensive ceRNA regulatory network was constructed, which was found to be significant in IDD progression.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom