Modelling the Spatial Distribution Differences of Compulsory Education Resource
Author(s) -
Weihong Liang,
Changsong Ma
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/8342789
Subject(s) - yearbook , china , spatial distribution , geography , compulsory education , distribution (mathematics) , statistical analysis , resource distribution , statistics , mathematics education , resource allocation , mathematics , economic growth , computer science , economics , mathematical analysis , archaeology , library science , computer network
This paper aimed to explore the difference in the spatial distribution of compulsory education resource allocation. Raw data were collected from the 2020 China Statistical Yearbook (county/district level) and Guangxi Province Statistical Yearbook of China. Data analysis was conducted using the entropy method, comprehensive evaluation method, K-means clusters analysis, analysis of variance, and spatial statistical analysis (Moran’s I index). It was determined that there were significant differences in the spatial distribution of compulsory education. The equilibrium degree to mandatory education resource allocation was divided into three classes: high level, medium level, and low level, and each class presented a spatial aggregation effect in the spatial distribution. Compared with the primary schools, the equilibrium degree of junior secondary school was higher. However, the equilibrium fluctuation of junior secondary schools was more significant among different counties/districts. The equilibrium of educational resources of junior secondary schools in the urban areas was higher than that in the rural areas, but there was no significant difference for the primary school.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom