Towards Achieving Personal Privacy Protection and Data Security on Integrated E-Voting Model of Blockchain and Message Queue
Author(s) -
Siriboon Chaisawat,
Chalee Vorakulpipat
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/8338616
Subject(s) - blockchain , computer science , computer security , message queue , voting , transparency (behavior) , queue , scheme (mathematics) , traceability , subsequence , data integrity , process (computing) , computer network , mathematical analysis , mathematics , software engineering , politics , political science , law , bounded function , operating system
The growing number of e-voting applications indicates the need in resolving issues that exist in the traditional election model. By integrating with blockchain technology, we could extend the model’s capabilities by presenting transparency in logic execution and integrity in data storage. Despite these advantages, blockchain brings in new challenges regarding system performance and data privacy. Due to distributed nature of blockchain, any new updating request needs to be reflected in all network’s peers before proceeding to the subsequence requests. This process produces delay and possibility in request rejection due to update conflict. In addition, data removal is no longer feasible since each record is protected by immutable hashed link. To overcome these limitations, the integration model of blockchain and message queue is proposed in this paper. The design addresses security concerns in data exchanging patterns, voter anonymization, and proof of system actor’s legitimacy. Performance tests are conducted on system prototypes which were deployed on two different settings. The result shows that the system can perform well in production environment, and introduction of message queue handling scheme can cope with blockchain’s errors in unexpected scenarios.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom