z-logo
open-access-imgOpen Access
Joint Channel Allocation and Power Control for Uplink NOMA-Assisted Multi-UAV Networks
Author(s) -
Shaojie Wen,
Lianbing Deng,
Zengliang Liu
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8337419
Subject(s) - noma , computer science , telecommunications link , joint (building) , power control , channel (broadcasting) , computer network , power (physics) , telecommunications , physics , quantum mechanics , architectural engineering , engineering
The explosive growth of data leads to that the traditional wireless networks cannot enable various quality of service (QoS) communication for cellular-connected multi-UAV (unmanned aerial vehicle) networks. To overcome this obstacle, we solve the joint optimization problem of channel allocation and power control for uplink NOMA-assisted multi-UAV networks. Firstly, we design a mixed integer nonlinear programming framework, where the channel gains are characterized with integral form in time interval and sorted in nondescending order as the priority index of the decoded signal. In order to propose a feasible algorithm, the initial power levels of UAVs are obtained and integrated into the original problem which is reduced to integer programming problem. Then, the UAVs whose channel gain differences satisfy the constraints will be divided into a group to share the same channel, while the initial power levels of UAVs are adjusted to get a more satisfactory initial solution for power control. Combining the solution of channel allocation and the initial power levels, we solve power control problem with asynchronous update mechanism until the power levels of UAVs remain unchanged. Finally, we propose a channel allocation algorithm and a power control algorithm with the asynchronous optimization mechanism, respectively. Simulation results show that the proposed algorithms can effectively improve the network performance in terms of the aggregated rate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom