Recognition of Power Equipment Based on Multitask Sparse Representation
Author(s) -
Lei Lei,
Jian Wu,
Shuhai Zheng,
Xinyi Zhang,
Liang Wang,
Yanfei Wang,
Hao Wan
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/8322361
Subject(s) - computer science , robustness (evolution) , artificial intelligence , pattern recognition (psychology) , sparse approximation , feature extraction , compressed sensing , random projection , computer vision , biochemistry , chemistry , gene
Image analysis of power equipment has important practical significance for power-line inspection and maintenance. This paper proposes an image recognition method for power equipment based on multitask sparse representation. In the feature extraction stage, based on the two-dimensional (2D) random projection algorithm, multiple projection matrices are constructed to obtain the multilevel features of the image. In the classification process, considering that the image acquisition process will inevitably be affected by factors such as light conditions and noise interference, the proposed method uses the multitask compressive sensing algorithm (MtCS) to jointly represent multiple feature vectors to improve the accuracy and robustness of reconstruction. In the experiment, the images of three types of typical power equipment of insulators, transformers, and circuit breakers are classified. The correct recognition rate of the proposed method reaches 94.32%. In addition, the proposed method can maintain strong robustness under the conditions of noise interference and partial occlusion, which further verifies its effectiveness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom