ALK5 i II Accelerates Induction of Adipose-Derived Stem Cells toward Schwann Cells through a Non-Smad Signaling Pathway
Author(s) -
Seiji Sawai,
Tsunao Kishida,
Shinichiro Kotani,
Shinji Tsuchida,
Ryo Oda,
Hiroyoshi Fujiwara,
Kenji Takahashi,
Osam Mazda,
Yoshihiro Sowa
Publication year - 2021
Publication title -
stem cells international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 64
eISSN - 1687-9678
pISSN - 1687-966X
DOI - 10.1155/2021/8307797
Subject(s) - sox2 , smad , microbiology and biotechnology , stem cell , downregulation and upregulation , biology , transforming growth factor , chemistry , gene , transcription factor , biochemistry
Schwann cells (SCs) are likely to be a vital component of cell-based therapies for nerve regeneration. There are various methods for inducing SC-like cells (SCLCs) from adipose-derived stem cells (ADSCs), but their phenotypic and functional characteristics remain unsatisfactory. Here, we report a novel efficient procedure to induce SCLCs by culturing ADSCs with ALK5 inhibitor (ALK5 i) II, a specific inhibitor of activin-like kinase 5 (ALK5) (transforming growth factor- β receptor 1 (TGF β R1)) that is also known as Repsox. The resultant cells that we named “modified SCLCs (mSCLCs)” expressed SC-specific genes more strongly than conventional SCLCs (cSCLCs) and displayed a neurosupportive capacity in vitro, similarly to genuine SCs. Regarding the mechanism of the mSCLC induction by ALK5 i II, knockdown of Smad2 and Smad3, key proteins in the TGF β /Smad signaling pathway, did not induce SC markers. Meanwhile, expression of multipotent stem cell markers such as Sex-determining region Y- (SRY-) box 2 (Sox2) was upregulated during induction. These findings imply that ALK5 i II exerts its effect via the non-Smad pathway and following upregulation of undifferentiated cell-related genes such as Sox2. The procedure described here results in highly efficient induction of ADSCs into transgene-free and highly functional SCLCs. This approach might be applicable to regeneration therapy for peripheral nerve injury.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom