Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks
Author(s) -
Pengfei Zhang,
Xiaoming Ju
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8268249
Subject(s) - discriminator , adversarial system , artificial intelligence , computer science , classifier (uml) , artificial neural network , pattern recognition (psychology) , machine learning , generative grammar , generative adversarial network , gaussian , deep learning , telecommunications , physics , quantum mechanics , detector
It is important to detect adversarial samples in the physical world that are far away from the training data distribution. Some adversarial samples can make a machine learning model generate a highly overconfident distribution in the testing stage. Thus, we proposed a mechanism for detecting adversarial samples based on semisupervised generative adversarial networks (GANs) with an encoder-decoder structure; this mechanism can be applied to any pretrained neural network without changing the network’s structure. The semisupervised GANs also give us insight into the behavior of adversarial samples and their flow through the layers of a deep neural network. In the supervised scenario, the latent feature of the semisupervised GAN and the target network’s logit information are used as the input of the external classifier support vector machine to detect the adversarial samples. In the unsupervised scenario, first, we proposed a one-class classier based on the semisupervised Gaussian mixture conditional generative adversarial network (GM-CGAN) to fit the joint feature information of the normal data, and then, we used a discriminator network to detect normal data and adversarial samples. In both supervised scenarios and unsupervised scenarios, experimental results show that our method outperforms latest methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom