Application of the Deep Learning Algorithm and Similarity Calculation Model in Optimization of Personalized Online Teaching System of English Course
Author(s) -
Yuan Fang,
Jingning Li
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/8249625
Subject(s) - course (navigation) , similarity (geometry) , computer science , artificial intelligence , college english , machine learning , optimization algorithm , personalized learning , algorithm , teaching method , mathematics education , mathematical optimization , psychology , mathematics , cooperative learning , open learning , image (mathematics) , physics , astronomy
This study provides an in-depth study and analysis of English course recommendation techniques through a combination of bee colony algorithm and neural network algorithm. In this study, the acquired text is trained with a document vector by a deep learning model and combined with a collaborative filtering method to recommend suitable courses for users. Based on the analysis of the current research status and development of the technology related to course resource recommendation, the deep learning technology is applied to the course resource recommendation based on the current problems of sparse data and low accuracy of the course recommendation. For the problem that the importance of learning resources to users changes with time, this study proposes to fuse the time information into the neural collaborative filtering algorithm through the clustering classification algorithm and proposes a deep learning-based course resource recommendation algorithm to better recommend the course that users want to learn at this stage promptly. Secondly, the course cosine similarity calculation model is improved for the course recommendation algorithm. Considering the impact of the number of times users rate courses and the time interval between users rating different courses on the course similarity calculation, the contribution of active users to the cosine similarity is reduced and a time decay penalty is given to users rating courses at different periods. By improving the hybrid recommendation algorithm and similarity calculation model, the error value, recall, and accuracy of course recommendation results outperform other algorithmic models. The requirements analysis identifies the personalized online teaching system with rural primary and secondary school students as the main service target and then designs the overall architecture and functional modules of the recommendation system and the database table structure to implement the user registration, login, and personal center functional modules, course publishing, popular recommendation, personalized recommendation, Q&A, and rating functional modules.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom