z-logo
open-access-imgOpen Access
Refined Composite Multivariate Multiscale Fractional Fuzzy Entropy: Measuring the Dynamical Complexity of Multichannel Financial Data
Author(s) -
Huiqin Chu,
Zhiyong Wu,
Wei Zhang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/8173590
Subject(s) - multivariate statistics , entropy (arrow of time) , fuzzy logic , computer science , measure (data warehouse) , composite index , data mining , multivariate analysis , mathematics , artificial intelligence , algorithm , composite indicator , econometrics , machine learning , physics , quantum mechanics
Refined composite multivariate multiscale fractional fuzzy entropy (RCmvMFFE), which aims to sensitively discriminate different short noisy multichannel financial data, is proposed as a new measure to quantify the complexity dynamics of multichannel time series in this work. To better comprehend the RCmvMFFE measure, the dynamical complexity analyses of multichannel synthetic dataset are comparatively studied with multivariate multiscale fuzzy entropy (mvMFE), refined composite multivariate multiscale fuzzy entropy (RCmvMFE), and refined composite multivariate multiscale fractional fuzzy entropy (RCmvMFFE). Then, these measures are firstly employed to explore actual multichannel financial index series to the best of our knowledge. The empirical analyses report that RCmvMFFE measure is able to deeply and sensitively dig up the market information hidden in the multichannel financial data and can better discriminate markets in different area compared to the traditional measures to some extent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom