Semilinear Fractional Evolution Inclusion Problem in the Frame of a Generalized Caputo Operator
Author(s) -
Adel Lachouri,
Abdelouaheb Ardjouni,
Fahd Jarad,
Mohammed S. Abdo
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.579
H-Index - 28
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/8162890
Subject(s) - operator (biology) , mathematics , fractional calculus , open set , lipschitz continuity , fixed point , pure mathematics , mathematical analysis , chemistry , biochemistry , repressor , transcription factor , gene
In this paper, we study the existence of solutions to initial value problems for a nonlinear generalized Caputo fractional differential inclusion with Lipschitz set-valued functions. The applied fractional operator is given by the kernel k ρ , s = ξ ρ − ξ s and the derivative operator 1 / ξ ′ ρ d / d ρ . The existence result is obtained via fixed point theorems due to Covitz and Nadler. Moreover, we also characterize the topological properties of the set of solutions for such inclusions. The obtained results generalize previous works in the literature, where the classical Caputo fractional derivative is considered. In the end, an example demonstrating the effectiveness of the theoretical results is presented.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom