z-logo
open-access-imgOpen Access
Development of a Comprehensive Driving Cycle for Construction Machinery Used for Energy Recovery System Evaluation: A Case Study of Medium Hydraulic Excavators
Author(s) -
Peng Hu,
Jianxin Zhu,
Jun Gong,
Daqing Zhang,
Changsheng Liu,
Yuming Zhao,
Yong Guo
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/8132878
Subject(s) - excavator , boom , engineering , energy (signal processing) , automotive engineering , power (physics) , hydraulic machinery , efficient energy use , reliability engineering , computer science , civil engineering , mechanical engineering , mathematics , electrical engineering , statistics , physics , quantum mechanics , environmental engineering
Energy recovery and hybrid power technology are new directions in construction machinery energy-saving research. Thus far, however, no uniform standard method exists to evaluate the efficiency of novel energy-saving concept systems in early stages of development. Efficiency assessment is valuable and credible only by relying on driving cycles that are consistent with actual data. As representative products of construction machinery, hydraulic excavators are multifunctional, object-uncertain, and heavily influenced by operator habits. It is therefore challenging to develop standard excavator driving cycles. Aiming at the energy efficiency evaluation of new energy-saving products characterized by energy recovery and power system optimization, taking medium-sized hydraulic excavator as an example, this paper proposes an evaluation method of energy-saving efficiency and a classification construction method of comprehensive driving cycle of hydraulic excavator based on actual operating data with load demand power and boom recoverable power as combined variables. First, based on the analysis of general driving cycle variables for excavators with different energy-saving schemes, a load demand power model and boom recoverable power model based on machine sensing data are established. Second, 10 excavators were selected at different locations in southern China, and 30 days of real-world working data were recorded. Third, according to the periodic characteristics of working data, a method for dividing microcycle operation structure is proposed. The microcycle sample space based on the data conversion of working data is constructed and classified via the clustering algorithm. Finally, a comprehensive excavator driving cycle based on the classification results is constructed through the Markov method. Results show that the energy-saving efficiency of the three classification driving cycles was 17.45%, 13.60%, and 11.88%, respectively; the comprehensive energy-saving efficiency was 15.76%. The deviations in maximum load demand power and maximum boom recoverable power between the constructed comprehensive cycle and the sample space were 7.81% and 8.61%; the average deviation of characteristic parameters was 4.26%. The comprehensive driving cycles can fairly reflect the general characteristics of real-world working conditions. The proposed construction method of comprehensive driving cycles based on sample space is therefore reliable and holds great promise for evaluating the energy-saving efficiency of new energy-saving concept systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom