z-logo
open-access-imgOpen Access
Finite Cartan Graphs Attached to Nichols Algebras of Diagonal Type
Author(s) -
Qian Chen,
Jing Wang
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/8129361
Subject(s) - diagonal , rank (graph theory) , type (biology) , mathematics , cartan matrix , pure mathematics , hopf algebra , algebra over a field , combinatorics , non associative algebra , universal enveloping algebra , geometry , ecology , biology
Nichols algebras are fundamental objects in the construction of quantized enveloping algebras and in the classification of pointed Hopf algebras by the lifting method of Andruskiewitsch and Schneider. The structure of Cartan graphs can be attached to any Nichols algebras of diagonal type and plays an important role in the classification of Nichols algebras of diagonal type with a finite root system. In this paper, the main properties of all simply connected Cartan graphs attached to rank 6 Nichols algebras of diagonal type are determined. As an application, we obtain a subclass of rank 6 finite dimensional Nichols algebras of diagonal type.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom