z-logo
open-access-imgOpen Access
Bioinformatic Analysis of Immune Significance of RYR2 Mutation in Breast Cancer
Author(s) -
Zhiquan Xu,
Xiang Ling,
Rong Wang,
Yongfu Xiong,
He Zhou,
Haitao Gu,
Jijian Wang,
Linglong Peng
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/8072796
Subject(s) - biology , immune system , immunotherapy , mutation , cancer research , breast cancer , gene , cd8 , ryanodine receptor 2 , cancer , genetics , immunology , receptor , ryanodine receptor
Background. Currently, immunotherapy is widely used for breast cancer (BC) patients, and tumor mutation burden (TMB) is regarded as a valuable independent predictor of response to immunotherapy. However, specific gene mutations and their relationship with TMB and tumor-infiltrating immune cells in BC are not fully understood. Methods. Comprehensive bioinformatic analyses were performed using data from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. Survival curves were analyzed via Kaplan-Meier analysis. Univariate and multivariate Cox regression analyses were used for prognosis analysis. Gene set enrichment analysis (GSEA) was performed to explore regulatory mechanisms and functions. The CIBERSORT algorithm was used to calculate the tumor-infiltrating immune cell fractions. Results. We analyzed somatic mutation data of BC from TCGA and ICGC datasets and found that 19 frequently mutated genes were reported in both cohorts, namely, SPTA1, TTN, MUC17, MAP3K1, CDH1, FAT3, SYNE1, FLG, HMCN1, RYR2 (ryanodine receptor 2), GATA3, MUC4, PIK3CA, KMT2C, TP53, PTEN, ZFHX4, MUC16, and USH2A. Among them, we observed that RYR2 mutation was significantly associated with higher TMB and better clinical prognosis. Moreover, GSEA revealed that RYR2 mutation-enriched signaling pathways were related to immune-associated pathways. Furthermore, based on the CIBERSORT algorithm, we found that RYR2 mutation enhanced the antitumor immune response by enriching CD8+ T cells, activated memory CD4+ T cells, and M1 macrophages. Conclusion. RYR2 is frequently mutated in BC, and its mutation is related to increased TMB and promotes antitumor immunity; thus, RYR2 may serve as a valuable biomarker to predict the immune response.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom