Icariin and Icariside II Reciprocally Stimulate Osteogenesis and Inhibit Adipogenesis of Multipotential Stromal Cells through ERK Signaling
Author(s) -
Dawei Zhang,
Ning Zhao,
Chao Wan,
Jikun Du,
Jiantao Lin,
Hongbo Wang
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/8069930
Subject(s) - icariin , adipogenesis , mapk/erk pathway , epimedium , stromal cell , runx2 , chemistry , mesenchymal stem cell , microbiology and biotechnology , bone morphogenetic protein 2 , signal transduction , pharmacology , biology , gene expression , cancer research , biochemistry , medicine , traditional medicine , gene , in vitro , pathology , alternative medicine , herb , medicinal herbs
Herba Epimedii is a famous Chinese herbal medicine for treating bone diseases. Icariin and icariside II, the main chemical constituents, have attracted great attention from scientists for their potential as antiosteoporosis agents. Our study aimed to evaluate their effects on the lineage commitment of multipotential stromal cells (MSCs). The osteogenesis and adipogenesis of MSCs were assessed by ALP activity, calcium deposition, and adipocyte formation. The expression profiles and levels of osteogenic and adipogenic specific genes were evaluated by cDNA microarray and quantitative real-time PCR. The involvement of extracellular signal-regulated kinase (ERK) signaling was studied by enzyme-linked immunosorbent assay. Icariin and icariside II significantly increased ALP activity and mineralization during osteogenic differentiation of MSCs. Runx2, Col1, and Bmp2 were upregulated in the presence of icariin and icariside II. Meanwhile, they downregulated Pparg, Adipsin, and Cebpb expression during adipogenic differentiation. cDNA microarray revealed 57 differentially expressed genes during lineage commitment of MSCs. In addition, icariin and icariside II enhanced the phosphorylation of ERK, and the above biological effects were blocked by ERK inhibitor U0126. Icariin and icariside II may drive the final lineage commitment of MSCs towards osteogenesis and inhibit adipogenesis through the ERK signaling pathway. Both of them exert multiple osteoprotective effects and deserve more attention for their medicinal and healthcare prospects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom