z-logo
open-access-imgOpen Access
Forecast of Thunderstorm Cloud Trend Based on Monitoring Data of Thunder Mobile Positioning System
Author(s) -
Mingfa Wu,
Chongjing Yang,
Xiangke Liu
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/8062549
Subject(s) - thunder , thunderstorm , lightning (connector) , lightning strike , computer science , lightning detection , meteorology , upper atmospheric lightning , process (computing) , real time computing , remote sensing , environmental science , geology , geography , power (physics) , physics , quantum mechanics , operating system
As a natural phenomenon, thunder and lightning have a major impact on human production and life. As an important part of lightning protection technology, the main task of the lightning mobile positioning system is to detect and determine the location of lightning and, at the same time, provide more accurate lightning discharge parameters for lightning research. It is a new technology that serves the entire society and is in urgent need of development. This paper aims to study the trend prediction of thunderstorm cloud based on the monitoring data of the thunder and lightning mobile positioning system. In this thesis, the inverse distance-weighted interpolation method can be used to determine the lightning area and the principle of lightning monitoring and positioning, and the classification of lightning and the practical significance of lightning mobile positioning system monitoring are also studied. Finally, the Hurst index of this paper can reveal the trend elements in the time series well through the experiment, so as to judge the lightning strikes. At the same time, it also introduces everyone’s satisfaction survey on the lightning mobile positioning system. The results of this paper show that the lightning mobile positioning system has been widely used in our country’s meteorological monitoring stations, and it plays a very important role in our national defense lightning strikes and effectively realizes the lightning strike prediction in the monitoring process, which can better enable the competent department to take timely and accurate measures to prevent lightning strikes. Experimental analysis shows that the accuracy of the lightning mobile positioning system has reached 92%, and the practicability has reached 88%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom