z-logo
open-access-imgOpen Access
Analog Circuit Soft Fault Diagnosis Based on Sparse Random Projections and K-Nearest Neighbor
Author(s) -
Jian Sun,
Guobin Hu,
Chenghua Wang
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/8040140
Subject(s) - digital biquad filter , k nearest neighbors algorithm , computer science , pattern recognition (psychology) , fault (geology) , artificial intelligence , classifier (uml) , feature extraction , filter (signal processing) , algorithm , low pass filter , computer vision , seismology , geology
Analog circuit fault diagnosis is a key problem in theory of circuit networks and has been investigated by many researchers in recent years. An approach based on sparse random projections (SRPs) and K-nearest neighbor (KNN) to the realization of analog circuit soft fault diagnosis has been presented in this paper. The proposed method uses the wavelet packet energy spectrum and sparse random projections to preprocess the time response for feature extraction. Then, the variables of the fault features are constructed, which are used to form the observation sequences of K-nearest neighbor classifier. K-nearest neighbor classifier is used to accomplish the fault diagnosis of analog circuit. In this paper, four-opamp biquad high-pass filter has been used as simulation example to verify the effectiveness of the proposed method. The simulations show that the proposed method offers higher correct fault location rate in analog circuit soft fault diagnosis application as compared with the other methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom