A New Estimate for the Homogenization Method for Second-Order Elliptic Problem with Rapidly Oscillating Periodic Coefficients
Author(s) -
Xiong Liu,
Wenming He
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/8036814
Subject(s) - homogenization (climate) , mathematical analysis , mathematics , order (exchange) , economics , biodiversity , ecology , biology , finance
In this paper, we will investigate a multiscale homogenization theory for a second-order elliptic problem with rapidly oscillating periodic coefficients of the form ∂ / ∂ x i a i j x / ε , x ∂ u ε x / ∂ x j = f x . Noticing the fact that the classic homogenization theory presented by Oleinik has a high demand for the smoothness of the homogenization solution u 0 , we present a new estimate for the homogenization method under the weaker smoothness that homogenization solution u 0 satisfies than the classical homogenization theory needs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom