z-logo
open-access-imgOpen Access
Evaluation of the Influence of Antistripping Agents on Water Sensitivity of the Stone Matrix Asphalt Mixture Modified by Recycled Ground Tire Rubber and Waste Polyethylene Terephthalate
Author(s) -
Alireza Ameli,
Rezvan Babagoli
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/8029702
Subject(s) - materials science , dynamic shear rheometer , composite material , polyethylene terephthalate , ultimate tensile strength , asphalt , crumb rubber , softening point , rheology , natural rubber , polyvinyl alcohol , rheometer
This research intends to evaluate the effects of the waste polyethylene terephthalate (PET), antistripping agents (ASA), and ground tire rubber (GTR) on the performance properties of the stone matrix asphalt (SMA) mix binder/water damage resistance. Liquid antistripping agents, added to 85/100 penetration grade binder to evaluate the ASA effects, were A (M500), B (EvothermM1), and C (LOF-6500). Tests conducted to study the modified bitumen’s rheological properties included softening point, penetration, rotational viscosity (RV), and dynamic shear rheometer (DSR), and tests performed in order to examine the moisture sensitivity of the modified mix were the Texas boiling and resilient modulus (MR), fracture energy (FE), and indirect tensile strength (ITS) ratio tests. Results showed that the MR, ITS, and FE of asphalt mixes modified with crumb rubber (CR), ASA, and PET were improved. Adding 50% PET, 50% CR, and ASA (B) led to the highest tensile strength, resilient modulus, and fracture energy ratios showing a perfect water susceptibility of the mentioned mix.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom