z-logo
open-access-imgOpen Access
Deep Reinforcement Learning for Scheduling in an Edge Computing‐Based Industrial Internet of Things
Author(s) -
Jingjing Wu,
Guoliang Zhang,
Jiaqi Nie,
Yuhuai Peng,
Yunhou Zhang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/8017334
Subject(s) - computer science , reinforcement learning , internet of things , scheduling (production processes) , industrial internet , edge computing , the internet , enhanced data rates for gsm evolution , edge device , artificial intelligence , distributed computing , world wide web , mathematical optimization , cloud computing , operating system , mathematics
The demand for improving productivity in manufacturing systems makes the industrial Internet of things (IIoT) an important research area spawned by the Internet of things (IoT). In IIoT systems, there is an increasing demand for different types of industrial equipment to exchange stream data with different delays. Communications between massive heterogeneous industrial devices and clouds will cause high latency and require high network bandwidth. The introduction of edge computing in the IIoT can address unacceptable processing latency and reduce the heavy link burden. However, the limited resources in edge computing servers are one of the difficulties in formulating communication scheduling and resource allocation strategies. In this article, we use deep reinforcement learning (DRL) to solve the scheduling problem in edge computing to improve the quality of services provided to users in IIoT applications. First, we propose a hierarchical scheduling model considering the central-edge computing heterogeneous architecture. Then, according to the model characteristics, a deep intelligent scheduling algorithm (DISA) based on a double deep Q network (DDQN) framework is proposed to make scheduling decisions for communication. We compare DISA with other baseline solutions using various performance metrics. Simulation results show that the proposed algorithm is more effective than other baseline algorithms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom