Comparison of the Meta-Active Machine Learning Model Applied to Biological Data-Driven Experiments with Other Models
Author(s) -
Hao Wang
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/8014850
Subject(s) - computer science , machine learning , artificial intelligence , active learning (machine learning) , experimental data , meta learning (computer science) , engineering , mathematics , statistics , systems engineering , task (project management)
Currently, many methods that could estimate the effects of conditions on a given biological target require either strong modelling assumptions or separate screens. Traditionally, many conditions and targets, without doing all possible experiments, could be achieved by driven experimentation or several mathematical methods, especially conversational machine learning methods. However, these methods still could not avoid and replace manual labels completely. This paper presented a meta-active machine learning method to resolve this problem. This project has used nine traditional machine learning methods to compare their accuracy and running time. In addition, this paper analyzes the meta-active machine learning method (MAML) compared with a classical screening method and progressive experiments. The obtained results show that applying this method yields the best experimental results on the current dataset.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom