Metagenomic Sequencing Analysis for Acne Using Machine Learning Methods Adapted to Single or Multiple Data
Author(s) -
Yu Wang,
Mengru Sun,
Yifan Duan
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/8008731
Subject(s) - metagenomics , principal component analysis , acne , multiset , kernel principal component analysis , pattern recognition (psychology) , artificial intelligence , microbiome , computational biology , computer science , kernel (algebra) , machine learning , biology , mathematics , bioinformatics , kernel method , genetics , gene , support vector machine , combinatorics
The human health status can be assessed by the means of research and analysis of the human microbiome. Acne is a common skin disease whose morbidity increases year by year. The lipids which influence acne to a large extent are studied by metagenomic methods in recent years. In this paper, machine learning methods are used to analyze metagenomic sequencing data of acne, i.e., all kinds of lipids in the face skin. Firstly, lipids data of the diseased skin (DS) samples and the healthy skin (HS) samples of acne patients and the normal control (NC) samples of healthy person are, respectively, analyzed by using principal component analysis (PCA) and kernel principal component analysis (KPCA). Then, the lipids which have main influence on each kind of sample are obtained. In addition, a multiset canonical correlation analysis (MCCA) is utilized to get lipids which can differentiate the face skins of the above three samples. The experimental results show the machine learning methods can effectively analyze metagenomic sequencing data of acne. According to the results, lipids which only influence one of the three samples or the lipids which simultaneously have different degree of influence on these three samples can be used as indicators to judge skin statuses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom