The Maximal Difference of Different Powers of an Element Modulo
Author(s) -
Jinyun Qi,
Zhefeng Xu
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/8002211
Subject(s) - mathematics , modulo , element (criminal law) , combinatorics , discrete mathematics , political science , law
In this paper, we investigate the maximal difference of integer powers of an element modulo n . Let a n denote the integer b with 1 ≤ b ≤ n such that a ≡ b mod n for any integer a . Using the bounds for exponential sums, we obtain a lower bound of the function H m 1 , m 2 n : = max a m 1 n − a m 2 n : 1 ≤ a ≤ n , a , n = 1 , which gives n − H m 1 , m 2 n = O n 3 / 4 + o 1 .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom