z-logo
open-access-imgOpen Access
The Maximal Difference of Different Powers of an Element Modulo n
Author(s) -
Jinyun Qi,
Zhefeng Xu
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/8002211
Subject(s) - mathematics , modulo , element (criminal law) , combinatorics , discrete mathematics , political science , law
In this paper, we investigate the maximal difference of integer powers of an element modulo n . Let a n denote the integer b with 1 ≤ b ≤ n such that a ≡ b mod   n for any integer a . Using the bounds for exponential sums, we obtain a lower bound of the function H m 1 , m 2 n : = max a m 1 n − a m 2 n : 1 ≤ a ≤ n , a , n = 1 , which gives n − H m 1 , m 2 n = O n 3 / 4 + o 1 .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom