Analysis of the Shortest Path in Spherical Fuzzy Networks Using the Novel Dijkstra Algorithm
Author(s) -
Zafar Ullah,
Huma Bashir,
Rukhshanda Anjum,
Salman A. AlQahtani,
Suheer Al-Hadhrami,
Abdul Ghaffar
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/7946936
Subject(s) - dijkstra's algorithm , shortest path problem , sort , generalization , mathematics , graph theory , fuzzy logic , graph , algorithm , computer science , theoretical computer science , artificial intelligence , combinatorics , mathematical analysis , arithmetic
The concept of fuzzy graph (FG) and its generalized forms has been developed to cope with several real-life problems having some sort of imprecision like networking problems, decision making, shortest path problems, and so on. This paper is based on some developments in generalization of FG theory to deal with situation where imprecision is characterized by four types of membership grades. A novel concept of T-spherical fuzzy graph (TSFG) is proposed as a common generalization of FG, intuitionistic fuzzy graph (IFG), and picture fuzzy graph (PFG) based on the recently introduced concept of T-spherical fuzzy set (TSFS). The significance and novelty of proposed concept is elaborated with the help of some examples, graphical analysis, and results. Some graph theoretic terms are defined and their properties are studied. Specially, the famous Dijkstra algorithm is proposed in the environment of TSFGs and is applied to solve a shortest path problem. The comparative analysis of the proposed concept and existing theory is made. In addition, the advantages of the proposed work are discussed over the existing tools.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom