z-logo
open-access-imgOpen Access
Study on Dynamic Behavior and Energy Dissipation of Rock considering Initial Damage Effect
Author(s) -
Aihong Lu,
Jinhai Xu,
Yu Xia,
Lei Sun
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/7937459
Subject(s) - split hopkinson pressure bar , rock mass classification , materials science , dissipation , deformation (meteorology) , softening , composite material , strain rate , compaction , elastic modulus , degree (music) , geotechnical engineering , modulus , stress (linguistics) , geology , thermodynamics , linguistics , philosophy , physics , acoustics
To explore the influence of initial damage on the dynamic characteristics of rock mass, the Φ 50 mm split Hopkinson pressure bar (SHPB) test system was used, and the uniaxial impact compression tests on yellow sandstone specimens with different damage degrees were conducted, and then the variation law of mechanical properties of rock specimens with the initial damage was determined. The test results show that the dynamic stress-strain curve of rock specimens with initial damage can be roughly divided into compaction stage, elastic deformation stage, crack evolution stage, and strain-softening stage; the higher the initial damage degree of rock mass, the more significant the compaction stage. With the increase of the initial damage degree, the dynamic elastic modulus and peak stress of rock mass decrease gradually in a power number, while the peak strain of rock mass increases exponentially. With the increase of the initial damage degree, both the reflected energy ratio and the dissipated energy ratio decrease linearly, while the transmitted energy ratio increases linearly; the increasing rate of the transmitted energy ratio is greater than the decreasing rate of the reflected energy ratio.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom