Real‐Time Human Ear Detection Based on the Joint of Yolo and RetinaFace
Author(s) -
Huy Nguyen Quoc,
Vinh Truong Hoang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/7918165
Subject(s) - joint (building) , computer science , human ear , artificial intelligence , computer vision , acoustics , engineering , physics , structural engineering
Biometric traits gradually proved their importance in real-life applications, especially in identification field. Among the available biometric traits, the unique shape of the human ear has also received loads of attention from scientists through the years. Hence, numerous ear-based approaches have been proposed with promising performance. With these methods, plenty problems can be solve by the distinctiveness of ear features, such as recognizing human with mask or diagnose ear-related diseases. As a complete identification system requires an effective detector for real-time application, and the current richness and variety of ear detection algorithms are poor due to the small and complex shape of human ears. In this paper, we introduce a new human ear detection pipeline based on the YOLOv3 detector. A well-known face detector named RetinaFace is also added in the detection system to narrow the regions of interest and enhance the accuracy. The proposed method is evaluated on an unconstrained dataset, which shows its effectiveness.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom