z-logo
open-access-imgOpen Access
A Tristage Adaptive Biased Learning for Artificial Bee Colony
Author(s) -
Qiaoyong Jiang,
Yueqi Ma,
Yanyan Lin,
Jianan Cui,
Xinjia Liu,
Yali Wu,
Lei Wang
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/7902783
Subject(s) - benchmark (surveying) , artificial intelligence , artificial bee colony algorithm , computer science , population , ranking (information retrieval) , suite , machine learning , convergence (economics) , geography , demography , geodesy , archaeology , sociology , economic growth , economics
In recent ten years, artificial bee colony (ABC) has attracted more and more attention, and many state-of-the-art ABC variants (ABCs) have been developed by introducing different biased information to the search equations. However, the same biased information is employed in employed bee and onlooker bee phases, which will cause over exploitation and lead to premature convergence. To overcome this limit, an effective framework with tristage adaptive biased learning is proposed for existing ABCs (TABL + ABCs). In TABL + ABCs, the search direction in the employed bee stage is guided by learning the ranking biased information of the parent food sources, while in the onlooker bee stage, the search direction is determined by extracting the biased information of population distribution. Moreover, a deletion-restart learning strategy is designed in scout bee stage to prevent the potential risk of population stagnation. Systematic experiment results conducted on CEC2014 competition benchmark suite show that proposed TABL + ABCs perform better than recently published AEL + ABCs and ACoS + ABCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom