z-logo
open-access-imgOpen Access
Event-Tree Based Sequence Mining Using LSTM Deep-Learning Model
Author(s) -
János Abonyi,
Karoly Richard,
Gyula Dörgő
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/7887159
Subject(s) - computer science , event (particle physics) , sequence (biology) , tree (set theory) , decision tree , artificial intelligence , event tree , data mining , machine learning , process (computing) , tree diagram , series (stratigraphy) , mathematics , fault tree analysis , posterior probability , mathematical analysis , paleontology , genetics , physics , engineering , reliability engineering , biology , operating system , bayesian probability , quantum mechanics
During the operation of modern technical systems, the use of the LSTM model for the prediction of process variable values and system states is commonly widespread. The goal of this paper is to expand the application of the LSTM-based models upon obtaining information based on prediction. In this method, by predicting transition probabilities, the output layer is interpreted as a probability model by creating a prediction tree of sequences instead of just a single sequence. By further analyzing the prediction tree, we can take risk considerations into account, extract more complex prediction, and analyze what event trees are yielded from different input sequences, that is, with a given state or input sequence, the upcoming events and the probability of their occurrence are considered. In the case of online application, by utilizing a series of input events and the probability trees, it is possible to predetermine subsequent event sequences. The applicability and performance of the approach are demonstrated via a dataset in which the occurrence of events is predetermined, and further datasets are generated with a higher-order decision tree-based model. The case studies simply and effectively validate the performance of the created tool as the structure of the generated tree, and the determined probabilities reflect the original dataset.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom