z-logo
open-access-imgOpen Access
Overlying Strata Movement and Abutment Pressure Evolution Process of Fully Mechanized Top Coal Caving Mining in Extra Thick Coal Seam
Author(s) -
Yongqiang Zhao,
Yingming Yang,
Xiaobin Li,
Zhiqi Wang
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/7839888
Subject(s) - abutment , coal mining , geology , mining engineering , overburden , coal , drilling , geotechnical engineering , stress (linguistics) , overburden pressure , problems in coal mining , ground pressure , structural engineering , engineering , mechanical engineering , linguistics , philosophy , waste management
Taken overlying strata of fully mechanized top coal caving mining (FMTCCM) in 15 m extra thick coal seam as the research object, the comprehensive research methods such as field investigation, theoretical calculation, and numerical analysis are used to systematically analyze. During the mining of extra thick coal seam, the overlying strata form the structure of lower cantilever beam and upper hinged rock beam. The downward transmission caused by the interaction of this combined structure is the fundamental reason for the strong periodic ground pressure behavior of working face and roadway blow. The movement process of overlying strata movement is divided into four stages, and dynamic distribution characteristics of lateral abutment pressure in different stages are obtained. It is considered that the gob side roadway can be in a relatively stable overburden structure and stress environment during the stable stage of abutment pressure. The distribution range of the internal and external stress fields is determined, which provides a theoretical basis for the reasonable roadway layout. At last, the fracture position and abutment pressure evolution process of overlying strata along the goaf side of the extra thick coal seam are further verified by drilling stress measurement.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom