Stable and Holomorphic Implementation of Complex Functions Using a Unit Circle-Based Transform
Author(s) -
Binesh Thankappan
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/7817026
Subject(s) - unit circle , holomorphic function , complex plane , unit (ring theory) , mathematics , function (biology) , series (stratigraphy) , riemann hypothesis , complex conjugate , base (topology) , pure mathematics , unit disk , discrete mathematics , mathematical analysis , paleontology , mathematics education , evolutionary biology , biology
A stable and holomorphic implementation of complex functions in ℂ plane making use of a unit circle-based transform is presented in this paper. In this method, any complex number or function can be represented as an infinite series sum of progressive products of a base complex unit and its conjugate only, where both are defined inside the unit circle. With each term in the infinite progression lying inside the unit circle, the sum ultimately converges to the complex function under consideration. Since infinitely large number of terms are present in the progression, the first element of which may be deemed as the base unit of the given complex number, it is addressed as complex baselet so that the complex number or function is termed as the complex baselet transform. Using this approach, various fundamental operations applied on the original complex number in ℂ are mapped to equivalent operations on the complex baselet inside the unit circle, and results are presented. This implementation has unique properties due to the fact that the constituent elements are all lying inside the unit circle. Out of numerous applications, two cases are presented: one of a stable implementation of an otherwise unstable system and the second case of functions not satisfying Cauchy–Riemann equations thereby not holomorphic in ℂ plane, which are made complex differentiable using the proposed transform-based implementation. Various lemmas and theorems related to this approach are also included with proofs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom