Combination of GLP-1 Receptor Activation and Glucagon Blockage Promotes Pancreatic β-Cell Regeneration In Situ in Type 1 Diabetic Mice
Author(s) -
Liangbiao Gu,
Dandan Wang,
Xiaona Cui,
Tianjiao Wei,
Kun Yang,
Jin Yang,
Rui Wei,
Tianpei Hong
Publication year - 2021
Publication title -
journal of diabetes research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.034
H-Index - 50
eISSN - 2314-6753
pISSN - 2314-6745
DOI - 10.1155/2021/7765623
Subject(s) - regeneration (biology) , in situ , endocrinology , medicine , receptor , glucagon like peptide 1 receptor , type 2 diabetes , glucagon , chemistry , microbiology and biotechnology , diabetes mellitus , insulin , biology , agonist , organic chemistry
Pancreatic β-cell neogenesis in vivo holds great promise for cell replacement therapy in diabetic patients, and discovering the relevant clinical therapeutic strategies would push it forward to clinical application. Liraglutide, a widely used antidiabetic glucagon-like peptide-1 (GLP-1) analog, has displayed diverse β-cell-protective effects in type 2 diabetic animals. Glucagon receptor (GCGR) monoclonal antibody (mAb), a preclinical agent that blocks glucagon pathway, can promote recovery of functional β-cell mass in type 1 diabetic mice. Here, we conducted a 4-week treatment of the two drugs alone or in combination in type 1 diabetic mice. Although liraglutide neither lowered the blood glucose level nor increased the plasma insulin level, the immunostaining showed that liraglutide expanded β-cell mass through self-replication, differentiation from precursor cells, and transdifferentiation from pancreatic α cells to β cells. The pancreatic β-cell mass increased more significantly after GCGR mAb treatment, while the combination group did not further increase the pancreatic β-cell area. However, compared with the GCGR mAb group, the combined treatment reduced the plasma glucagon level and increased the proportion of β cells/α cells. Our study evaluated the effect of liraglutide, GCGR mAb monotherapy, or combined strategy in glucose control and islet β-cell regeneration and provided useful clues for the future clinical application in type 1 diabetes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom