z-logo
open-access-imgOpen Access
Combination of GLP-1 Receptor Activation and Glucagon Blockage Promotes Pancreatic β-Cell Regeneration In Situ in Type 1 Diabetic Mice
Author(s) -
Liangbiao Gu,
Dandan Wang,
Xiaona Cui,
Tianjiao Wei,
Kun Yang,
Jin Yang,
Rui Wei,
Tianpei Hong
Publication year - 2021
Publication title -
journal of diabetes research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.034
H-Index - 50
eISSN - 2314-6753
pISSN - 2314-6745
DOI - 10.1155/2021/7765623
Subject(s) - regeneration (biology) , in situ , endocrinology , medicine , receptor , glucagon like peptide 1 receptor , type 2 diabetes , glucagon , chemistry , microbiology and biotechnology , diabetes mellitus , insulin , biology , agonist , organic chemistry
Pancreatic β-cell neogenesis in vivo holds great promise for cell replacement therapy in diabetic patients, and discovering the relevant clinical therapeutic strategies would push it forward to clinical application. Liraglutide, a widely used antidiabetic glucagon-like peptide-1 (GLP-1) analog, has displayed diverse β-cell-protective effects in type 2 diabetic animals. Glucagon receptor (GCGR) monoclonal antibody (mAb), a preclinical agent that blocks glucagon pathway, can promote recovery of functional β-cell mass in type 1 diabetic mice. Here, we conducted a 4-week treatment of the two drugs alone or in combination in type 1 diabetic mice. Although liraglutide neither lowered the blood glucose level nor increased the plasma insulin level, the immunostaining showed that liraglutide expanded β-cell mass through self-replication, differentiation from precursor cells, and transdifferentiation from pancreatic α cells to β cells. The pancreatic β-cell mass increased more significantly after GCGR mAb treatment, while the combination group did not further increase the pancreatic β-cell area. However, compared with the GCGR mAb group, the combined treatment reduced the plasma glucagon level and increased the proportion of β cells/α cells. Our study evaluated the effect of liraglutide, GCGR mAb monotherapy, or combined strategy in glucose control and islet β-cell regeneration and provided useful clues for the future clinical application in type 1 diabetes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom