z-logo
open-access-imgOpen Access
Mechanisms of Hydroxyurea‐Induced Cellular Senescence: An Oxidative Stress Connection?
Author(s) -
Sunčica Kapor,
Vladan P. Čokić,
Juan F. Santibáñez
Publication year - 2021
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2021/7753857
Subject(s) - senescence , oxidative stress , connection (principal bundle) , microbiology and biotechnology , cellular senescence , chemistry , biology , genetics , biochemistry , gene , phenotype , engineering , structural engineering
Hydroxyurea (HU) is a water-soluble antiproliferative agent used for decades in neoplastic and nonneoplastic conditions. HU is considered an essential medicine because of its cytoreduction functions. HU is an antimetabolite that inhibits ribonucleotide reductase, which causes a depletion of the deoxyribonucleotide pool and dramatically reduces cell proliferation. The proliferation arrest, depending on drug concentration and exposure, may promote a cellular senescence phenotype associated with cancer cell therapy resistance and inflammation, influencing neighboring cell functions, immunosuppression, and potential cancer relapse. HU can induce cellular senescence in both healthy and transformed cells in vitro, in part, because of increased reactive oxygen species (ROS). Here, we analyze the main molecular mechanisms involved in cytotoxic/genotoxic HU function, the potential to increase intracellular ROS levels, and the principal features of cellular senescence induction. Understanding the mechanisms involved in HU's ability to induce cellular senescence may help to improve current chemotherapy strategies and control undesirable treatment effects in cancer patients and other diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom