z-logo
open-access-imgOpen Access
Research on Credit Evaluation of Financial Enterprises Based on the Genetic Backpropagation Neural Network
Author(s) -
Hua Peng
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/7745920
Subject(s) - backpropagation , artificial neural network , genetic algorithm , computer science , convergence (economics) , artificial intelligence , credit rating , machine learning , value (mathematics) , data mining , finance , business , economics , economic growth
In this paper, an improved neural network enterprise credit rating model, which is grounded on a genetic algorithm, is suggested. With the characteristics of self-adaptiveness and self-learning, the genetic algorithm is utilized to adjust and enhance the thresholds and weights of the neural network connections. The potential problems of the backpropagation (BP) neural network with slothful speed of convergence and the possibility of falling into the local minimum point are solved to a convinced degree using the genetic algorithm in combination. The hybrid technique of the genetic BP neural network is applied to a credit rating system. Using commercial banks’ datasets, our experimental evaluations suggest that, using a combination of the BP neural network and the genetic algorithm, the proposed model has high accuracy in enterprise credit rating and has good application value. Moreover, the proposed model is approximately 15.9% more accurate than the classical BP neural network approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom