[Retracted] Quantitative Evaluation of Plant and Modern Urban Landscape Spatial Scale Based on Multiscale Convolutional Neural Network
Author(s) -
Yang Wang,
Moyang Li
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/7742700
Subject(s) - convolutional neural network , computer science , confusion matrix , artificial intelligence , cohen's kappa , scale (ratio) , confusion , pattern recognition (psychology) , data mining , machine learning , cartography , geography , psychology , psychoanalysis
Modern urban landscape is a simple ecosystem, which is of great significance to the sustainable development of the city. This study proposes a landscape information extraction model based on deep convolutional neural network, studies the multiscale landscape convolutional neural network classification method, constructs a landscape information extraction model based on multiscale CNN, and finally analyzes the quantitative effect of deep convolutional neural network. The results show that the overall kappa coefficient is 0.91 and the classification accuracy is 93% by calculating the confusion matrix, production accuracy, and user accuracy. The method proposed in this study can identify more than 90% of water targets, the user accuracy and production accuracy are 99.78% and 91.94%, respectively, and the overall accuracy is 93.33%. The method proposed in this study is obviously better than other methods, and the kappa coefficient and overall accuracy are the best. This study provides a certain reference value for the quantitative evaluation of modern urban landscape spatial scale.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom