z-logo
open-access-imgOpen Access
Material Basis and Mechanism of Chansu Injection for COVID-19 Treatment Based on Network Pharmacology and Molecular Docking Technology
Author(s) -
Yong Xu,
Wenpan Peng,
Di Han,
Zhichao Wang,
Fanchao Feng,
Xianmei Zhou,
Qi Wu
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/7697785
Subject(s) - kegg , docking (animal) , mechanism of action , computational biology , gene , chemistry , biology , biochemistry , gene ontology , gene expression , medicine , nursing , in vitro
Purpose The clinical efficacy of Chansu injection for COVID-19 treatment has been confirmed. Its mechanism of action remains unclear. We used network pharmacology and molecular docking technology to explore the potential material basis and mechanism of action of Chansu injection for COVID-19.Methods The main components of Chansu injection were determined using HPLC. The PharmMapper, SwissTargetPrediction, SEA, and TCMID databases were used to screen for the active ingredients and therapeutic targets of Chansu injection, while the OMIM and GeneCards Suite databases were used to search for COVID-19-related targets. The STRING database was used for protein-protein interaction (PPI) network construction and topological analysis, while DAVID was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the core targets. The main active compounds of Chansu injection were docked with 3CL protease, ACE2, RdRp, and spike protein.Results The three Chansu injection compounds were identified using HPLC. A total of 236 drug-related targets and 16,611 disease-related targets were identified, and 77 common targets were determined through mapping. The PPI mapping results revealed that 16 core targets were obtained through topological analysis and screening. Furthermore, GO and KEGG pathway enrichment analyses revealed that the PI3K and JAK-STAT signaling pathways are the major pathways. The molecular docking results suggest that the three Chansu injection components have high binding energies to the S protein.Conclusions The potential mechanism of Chansu injection for COVID-19 involves multiple targets and pathways, thereby providing a scientific basis for its clinical application and further research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom