z-logo
open-access-imgOpen Access
Housing Price Prediction Based on Multiple Linear Regression
Author(s) -
Qingqi Zhang
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/7678931
Subject(s) - linear regression , real estate , computer science , econometrics , regression analysis , proper linear model , set (abstract data type) , regression , data set , test set , test (biology) , correlation coefficient , bayesian multivariate linear regression , statistics , machine learning , artificial intelligence , economics , mathematics , finance , paleontology , biology , programming language
In this paper, the author first analyzes the major factors affecting housing prices with Spearman correlation coefficient, selects significant factors influencing general housing prices, and conducts a combined analysis algorithm. Then, the author establishes a multiple linear regression model for housing price prediction and applies the data set of real estate prices in Boston to test the method. Through the data analysis and test in this paper, it can be summarized that the multiple linear regression model can effectively predict and analyze the housing price to some extent, while the algorithm can still be improved through more advanced machine learning methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom