z-logo
open-access-imgOpen Access
A Linear-Time Algorithm for 4-Coloring Some Classes of Planar Graphs
Author(s) -
Zuosong Liang,
Huandi Wei
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/7667656
Subject(s) - combinatorics , graph , mathematics , vertex (graph theory) , discrete mathematics
Every graph G =( V , E ) considered in this paper consists of a finite set V of vertices and a finite set E of edges, together with an incidence function that associates each edge e ∈ E of G with an unordered pair of vertices of G which are called the ends of the edge e . A graph is said to be a planar graph if it can be drawn in the plane so that its edges intersect only at their ends. A proper k -vertex-coloring of a graph G =( V , E ) is a mapping c : V ⟶ S ( S is a set of k colors) such that no two adjacent vertices are assigned the same colors. The famous Four Color Theorem states that a planar graph has a proper vertex-coloring with four colors. However, the current known proof for the Four Color Theorem is computer assisted. In addition, the correctness of the proof is still lengthy and complicated. In 2010, a simple O ( n 2 ) time algorithm was provided to 4-color a 3-colorable planar graph. In this paper, we give an improved linear-time algorithm to either output a proper 4-coloring of G or conclude that G is not 3-colorable when an arbitrary planar graph G is given. Using this algorithm, we can get the proper 4-colorings of 3-colorable planar graphs, planar graphs with maximum degree at most five, and claw-free planar graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom