z-logo
open-access-imgOpen Access
Synthesis of a Novel Filtrate Reducer and Its Application in Water-Based Drilling Fluid for Ultra-High-Temperature Reservoirs
Author(s) -
Dongyu Qiao,
Zhongbin Ye,
Lei Tang,
Zheng Yiping,
Xindong Wang,
Nanjun Lai
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/7643826
Subject(s) - drilling fluid , filter cake , adsorption , thermal stability , materials science , brine , chemical engineering , reducer , bentonite , viscosity , particle size , chemistry , mineralogy , drilling , composite material , chromatography , organic chemistry , thermodynamics , metallurgy , physics , engineering
The high-temperature stability and filtration property controlling of ultra-high-temperature water-based drilling fluids is a worldwide problem. To resolve this problem, a high-temperature-resistant quaternary copolymer (HTRTP) was synthesized based on molecular structure optimization design and monomer optimization. The physical and chemical properties were characterized by infrared spectroscopy, thermal weight, and spectrophotometry, and their temperature and salt resistance was evaluated in different drilling fluids, combined with adsorption, particle size analysis, and stability test. The results show that the thermal stability of HTRTP is very strong, and the initial temperature of thermal decomposition is above 320°C. The salt resistance of HTRTP is more than 162 g/L, and the calcium resistance is more than 5000 mg/L, which is equivalent to the foreign temperature-resistant polymer DCL-a, and is superior to the domestic metal ion viscosity increasing fluid loss agent PMHA-II for drilling fluids. It has excellent high-temperature resistance (245°C) and fluid loss reduction effect in fresh water base mud, fresh water weighted base mud, saturated brine base mud, and composite salt water base mud, which is better than foreign DCL-a (245°C) and domestic PMHA (220°C). The adsorption capacity of HTRTP on clay particles is large and firm, and the adsorption capacity changes little under the change of chemical environment and temperature. Both before and after HTRTP aging (245°C/16 h), the permeability of filter cake can be significantly reduced and its compressibility can be improved. By optimizing the particle size gradation of the drilling fluid and enhancing the colloid stability of the system, HTRTP can improve the filtration building capacity of the drilling fluid and reduce the filtration volume. The development of antithermal polymer provides a key treatment agent for the study of anti-high-temperature-resistant saline-based drilling fluid.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom