z-logo
open-access-imgOpen Access
A Note on the Primitive Roots and the Golomb Conjecture
Author(s) -
Yiwei Hou,
Hongyan Wang
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/7639259
Subject(s) - mathematics , conjecture , combinatorics
In this paper, we use the elementary methods and the estimates for character sums to prove the following conclusion. Let p be a prime large enough. Then, for any positive integer n with p 1 / 2 + ɛ ≤ n < p , there must exist two primitive roots α and β modulo p with 1 < α , β ≤ n − 1 such that the equation n = α + β holds, where 0 < ɛ < 1 / 2 is a fixed positive number. In other words, n can be expressed as the exact sum of two primitive roots modulo p .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom